Classifies a data point relative to a labelled data set, using the k-nearest neighbors algorithm.
- Use
Array.prototype.map()
to map thedata
to objects containing the euclidean distance of each element frompoint
, calculated usingMath.hypot()
,Object.keys()
and itslabel
. - Use
Array.prototype.sort()
andArray.prototype.slice()
to get thek
nearest neighbors ofpoint
. - Use
Array.prototype.reduce()
in combination withObject.keys()
andArray.prototype.indexOf()
to find the most frequentlabel
among them.
const kNearestNeighbors = (data, labels, point, k = 3) => { const kNearest = data .map((el, i) => ({ dist: Math.hypot(...Object.keys(el).map(key => point[key] - el[key])), label: labels[i] })) .sort((a, b) => a.dist - b.dist) .slice(0, k); return kNearest.reduce( (acc, { label }, i) => { acc.classCounts[label] = Object.keys(acc.classCounts).indexOf(label) !== -1 ? acc.classCounts[label] + 1 : 1; if (acc.classCounts[label] > acc.topClassCount) { acc.topClassCount = acc.classCounts[label]; acc.topClass = label; } return acc; }, { classCounts: {}, topClass: kNearest[0].label, topClassCount: 0 } ).topClass; };
Examples
const data = [[0, 0], [0, 1], [1, 3], [2, 0]]; const labels = [0, 1, 1, 0]; kNearestNeighbors(data, labels, [1, 2], 2); // 1 kNearestNeighbors(data, labels, [1, 0], 2); // 0
Recommended snippets
Groups the given data into
k
clusters, using the k-means clustering algorithm.Finds the index of a given element in a sorted array using the binary search algorithm.
Finds the first index of a given element in an array using the linear search algorithm.