 # Geometric progression

Python, Math, List · Nov 2, 2020 Initializes a list containing the numbers in the specified range where `start` and `end` are inclusive and the ratio between two terms is `step`.

• Use `range()`, `math.log()` and `math.floor()` and a list comprehension to create a list of the appropriate length, applying the step for each element.
• Returns an error if `step` equals `1`.
• Omit the second argument, `start`, to use a default value of `1`.
• Omit the third argument, `step`, to use a default value of `2`.
```from math import floor, log

def geometric_progression(end, start=1, step=2):
return [start * step ** i for i in range(floor(log(end / start)
/ log(step)) + 1)]```
```geometric_progression(256) # [1, 2, 4, 8, 16, 32, 64, 128, 256]
geometric_progression(256, 3) # [3, 6, 12, 24, 48, 96, 192]
geometric_progression(256, 1, 4) # [1, 4, 16, 64, 256]```

## More like this

• ### Arithmetic progression

Python, Math

Generates a list of numbers in the arithmetic progression starting with the given positive integer and up to the specified limit.

• ### Sum of powers

Python, Math

Returns the sum of the powers of all the numbers from `start` to `end` (both inclusive).

• ### Clamp number

Python, Math

Clamps `num` within the inclusive range specified by the boundary values.